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ABSTRACT 
An efficient and a practical genetic algorithm tool was developed 
and applied successfully to Burnable Poisons (BPs) placement 
optimization problem in the reference Three Mile Island-1 (TMI-1) 
core. Core BP optimization problem means developing a BP loading 
map for a given core loading configuration that minimizes the total 
Gadolinium (Gd) amount in the core without violating any design 
constraints. The number of UO2/Gd2O3 pins and Gd2O3 
concentrations for each fresh fuel location in the core are the 
decision variables and the total amount of the Gd in the core is in 
the objective function. The main objective is to develop the BP 
loading pattern to minimize the total Gd in the core together with the 
with residual binding at End-of-Cycle (EOC) and to keep the 
maximum peak pin power and Soluble Boron Concentration (SOB) 
at the Beginning of Cycle (BOC) both less than their limit values 
during core depletion. The innovation of this study was to search all 
of the feasible U/Gd fuel assembly designs with variable number of 
U/Gd pins and concentration of Gd2O3 in the overall decision space. 
The use of different fitness functions guides the solution towards 
desired (good solutions) region in the solution space, which 
accelerates the GA solution. The main objective of this study was to 
develop a practical and efficient GA tool and to apply this tool for 
designing BP patterns of a given core loading. 

Categories and Subject Descriptors 
J.2 [Physical Sciences and Engineering]: - Engineering 

General Terms: Algorithms, Performance, Design 

Keywords: Genetic Algorithm, Nuclear, Burnable Poison, 
Gadolinium, Optimization, Reactor, Decision Variables  

1. INTRODUCTION 
Deterministic and Stochastic Methods are widely used optimization 
techniques in nuclear fuel management. Li developed an automatic 
Pressurized Water Reactor (PWR) reload design expert system 
computer code [1]. This study presented two important deterministic 
techniques to develop an optimum PWR reload pattern. The first 
one is to develop a priority scheme, which represents the optimum 

placement of the fuel in the core for maximizing the cycle length or 
using minimum fresh fuel for a given cycle length. The second 
technique called Power Shape Driven Progressive Iteration (PSDPI) 
is to determine the burnable poison loading in the fresh fuel 
assemblies. This technique forces the Radial Power Distribution 
(RPD) to be as flat as possible by using the Haling Power 
Distribution (HPD) as a target power shape. Haibach performed a 
deterministic and stochastic fuel management study to optimize 
Integral Fuel Burnable Absorber (IFBA) designs for PWRs [2]. The 
deterministic results indicate it is not necessary to use large numbers 
of IFBA pins per assembly nor is it necessary to use exceedingly 
high boron enrichment in the IFBA pins. Their design reduced the 
maximum peak pin power by as much as 5 % over the vendor’s 
IFBA configuration. The study developed optimal loading pattern 
by using different number of IFBA fuel assembly in the core. The 
author determined number of IFBA assemblies needed in the core 
by comparing power distributions with HPD.  

Yilmaz S., et al. [3] developed a new deterministic technique called 
Modified Power Shaped Forced Diffusion (MPSFD), which uses 
RPD limit value instead of using HPD as a target to determine 
gadolinium loading for the fresh fuel assembly, which its radial 
power exceeds the limit. 

DeChaine [4], Guler [5], and Hongchun [6] performed core 
optimization studies by using genetic algorithms (GAs). They all 
determined the optimum core configuration for a given cycle. 
Standard bit-based genetic operators were used to optimize the 
arrangement of assemblies, burnable absorber, and used assembly 
orientations. All of their developed systems had a modular structure 
with flexible GA operators, constraint conditions and objective 
function. 

Kropaczek and Turinsky [7] combined the stochastic optimization 
technique of simulated annealing with a computationally efficient 
core physics model based on second-order accurate generalized 
perturbation theory. The model identifies the placements of feed 
fuel, exposed fuel with assembly orientations, and burnable poisons 
within core lattice that optimize fuel cycle performance or thermal 
margin.  

Maldonado [8] presented the development of an optimization tool 
which has been coupled to the lattice-physics code CPM-2. The 
study also used Simulated Annealing (SA) algorithm to optimize the 
pin-by-pin placement and loading of nuclear fuel and burnable 
absorbers. 

Keller [9] reintroduced genetic algorithm methodology into a 
modern version of the FORMOSA-P code [10], which was 
developed to determine the family of near-optimum loading patterns 
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(LPs) for PWRs by utilizing SA optimization methodology 
developed by Patrick [11]. The reintroduction was motivated by the 
inconsistency of the existing SA algorithms in determining near-
optimal feed fuel patterns. 

The GA, which is a stochastic method, provides an opportunity to 
work conveniently with discrete functions and without any 
derivative information [12]. It is based on concepts from biological 
genetics, where improving the population of organisms is viewed as 
an optimization problem, with the best individual surviving and 
producing the most offspring. The GA incorporates an objective 
function to improve the population. The GA objective function can 
have one variable (single objective) or more than one variable 
(multi-objective) to guide the improvement process [13]. 

The solution to the simultaneous core loading and BP placement 
problem is highly coupled and requires complex optimization 
calculations. In practice, the fuel loading pattern design starts with 
used and fresh fuel in the inventory for which some heuristic rules 
are applied to place them in the core [14]. Then, the BPs are inserted 
into those fresh fuel locations in which the power limit constraint 
has been exceeded. The design of BP loading patterns depends on 
the vendor’s U/Gd fuel assembly designs in the current approaches 
explained here.  Vendor’s reference fuel assembly designs were 
limited, and they did not cover all possible BP fuel assembly designs 
in the decision space defined later. The core designer had to develop 
loading pattern with these limited BP fuel assembly designs. Hence, 
the final design could not be the real good one. The innovation of 
this study was to search all of the possible U/Gd fuel assembly 
designs with variable number of U/Gd pins and concentration of 
Gd2O3 in the overall decision space. The main objective of this 
study was to develop a practical and efficient GA tool and to apply 
this tool for designing BP patterns of a given core loading. 

2. PROBLEM DEFINITION  
Core BP optimization problem means developing a BP loading map 
for a given core loading configuration that minimizes the total Gd 
amount in the core without violating any design constraints. A 
genetic algorithm (GA) has been developed to perform this 
optimization calculation.  The number of UO2/Gd2O3 pins and 
Gd2O3 concentrations for each fresh fuel location in the core are the 
decision variables and the total amount of the Gd in the core is in 
the objective function.  The main objective is to develop the BP 
loading pattern, which keeps maximum peak pin power and SOB 
BOC concentration values less than the limit values, and minimizes 
the total Gd amount in the core. The Core BP optimization problem 
starts with the equilibrium core loading pattern remaining fixed.  
The BP optimization problem is directed toward optimizing BP 
pattern in the core during the calculations. The number of 
UO2/Gd2O3 pins and Gd2O3 concentrations are two parameters that 
can be changed during evaluation to determine the best BP loading 
pattern. As the Gd is used in the fuel matrix mixed together with 
uranium, the different number of UO2/Gd2O3 pins and concentration 
of Gd2O3 fuel represents different fuel type in the transport theory 
and reactor physics code structures such as CASMO-3 / 
SIMULATE-3 [15,16], and they have to be named with different 
segment names each representing fuel type characteristics such as 
uranium enrichment, number of UO2/Gd2O3 pins and UO2/Gd2O3 
concentrations. Therefore, the Core BP optimization calculations 
require a comprehensive library, which includes the generation of all 
possible segment names and cross section data for different fuel 
types having different number of UO2/Gd2O3 pins and Gd2O3 

concentrations. This comprehensive library is generated once for all 
future SIMULATE-3 reactor physics calculations.  

Figure 1 shows a sample core loading model with fresh fuel 
locations in dark color and used fuel locations in light color for the 
reference TMI-1 core. There are a total 10 fresh fuel locations given 
in the reference core loading. The initial core loading pattern has 
total 3 different fuel types, and each type is represented with 
different numbers presented in the table that are 0 for used fuel 
without any boron absorber, 1 for fresh fuel and 2 for used fuel with 
boron absorber. Number of U/Gd pins within a fuel assembly and 
their concentrations are also given in Figure 1. 

 
Figure 1. Reference Initial Octant Core Loading for TMI-1 core 

2.1 Design Constraints 
Design constraints for Core BP placement optimization problem are 
summarized as follows; 
1. Maximum peak pin power should be less than 1.55 until 450 
EFPD (or 12.5 GWd/MTU cycle exposure), and then it should be 
less than 1.45 until end of cycle of 680 EFPD (or 20.68 GWd/MTU 
cycle exposure)   
2. U-235 enrichment of the fuel assemblies in the reference core 
loading should be fixed during the calculations 
3. Do not insert any BP into the used fuel  
4. Use fresh fuel locations in 1/8 core symmetry for the reference 
core and keep their positions fixed in the core during calculations 
5. Use maximum 20 U/Gd fuel pins  and follow symmetric pattern 
within a fuel assembly  
6. Use maximum 8 w/o Gd2O3 concentration for U/Gd fuel 
7. Beginning of Cycle (BOC) Soluble Boron Concentration (SOB) 
should be less than 1700 ppm at equilibrium  Xenon and Samarium    
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3. GENETIC ALGORITHM MODEL 
GAs are search and optimization procedures based on natural 
genetics and natural selection [13]. GAs are robust search 
algorithms requiring minimal problem information. Basically, the 
GA employed in this study involves binary representation to define 
the genotype. However, integer representation is utilized to increase 
the efficiency of the calculation and reduce the problem size in one 
aspect of the problem.  Decision variables are represented in binary 
strings to use GAs to determine good solutions, which satisfy all 
constraints. A black-box approach is used in GAs, which allows any 
reactor physics code to be used with GAs to evaluate the fitness of 
the individual. The fitness function is the objective function 
employed to determine the goodness of the selected solution. 

3.1 Phenotype and Genotype Representation 
Binary GA requires the representation of decision variables in 
binary strings [13]. There are total 8 different values for each of 
decision parameter creating the decision space. The decision space 
and decision variables of number of UO2/Gd2O3 fuel pins and the 
Gd2O3 concentrations with their possible values are shown in Figure 
2.  Each decision variable is assigned to integer numbers based on 
its value. The next step converts the integer numbers into binary bits 
using 3 bit binary representation. The main objective of this 
conversion is to reduce the genotype length to greatly reduce the 
CPU time during the calculations. The 3 bit binary representation of 
a decision variable has a total 8 or (23) different gene value each 
referring to different solutions as shown in Figure 2. Any possible 
bias in the calculations is eliminated with this representation, 
because the number of decision variables covers all of the possible 
number of genes value. The range of the number of UO2/Gd2O3 fuel 
pins is between 0 and 20. Classical binary representation would 
require at least 5 bit binary bits to include the maximum value of 
decision variable for this problem. The 5 bit representation has a 
total of 32 (25) different genes values or solutions increasing the 
genotype problem size by a factor of 40.  Thus, the GA code would 
take much more CPU time to achieve good results due to problem 
size. The GA code runs were performed with the available reference 
designs. The UO2/Gd2O3 fuel pin arrangement within a fuel 
assembly is another research topic and will be presented as a 
separate paper later. 
The phenotype represents the original BP loading pattern as applied 
to the reactor physics code, and the genotype is the bit-string 
representation and formulation of the phenotype for the genetic 
algorithm operations. A gene is composed of bits, each of which 
may exhibit 0 or 1 called an allele. The conversion process of 
phenotype (BP loading pattern) to genotype (binary form of BP 
loading pattern) is called encoding, and the reverse process is named 
as decoding.  

 
Figure 2 Decision space and its variables (16 and 20 mixed; mixed 
concentrations 
 
Both a sample phenotype and corresponding genotype structure are 
shown in Figure 3 for a sample BP loading. This figure shows how 
the phenotype of integer numbers is encoded into a genotype 
structure for the sample BP loading. The total 10 fresh fuel positions 
in the reference core loading pattern require using a total of 20 
decision variables. The genotype has 20 genes each represented by a 
3 bit binary gene. The total of 60 bits representation is required to 
encode the decision variables representative of the number of 
UO2/Gd2O3 fuel pins and their corresponding Gd2O3 concentrations.   
The GA code alters the population of BP patterns into new BP 
patterns by various selection methods.  Each of the population BP 
patterns is then decoded into phenotypes and evaluated by a reactor 
physics code for evaluation of its fitness value. By choosing high 
fitness values for the next generation, the GA continues to improve 
the BP pattern design until the optimum is attained. 

 
Figure 3. Sample phenotype and genotype structure  
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3.2 GA Operation 
In this study, it was selected that 150 different genotypes each 
representing different BP loading pattern forms a GA population. 
The binary form of the genotype is decoded into a phenotype for 
evaluation by a reactor physics code.  Figure 4 demonstrates the 
genetic algorithm flow diagram and its interaction with the reactor 
physics code. The genetic algorithm code starts with a randomly 
generated initial population. The evaluation of each population 
member requires an interface code shown in the dashed box to 
convert the decoded GA population member into the form of BP 
loading (U enrichment, No of BP rods, and Concentration), and to 
perform reactor physics calculations for determining core depletion 
parameters such as maximum peak pin power, maximum RPD 
power, BOC SOB concentration (ppm), and EOC SOB 
concentration (ppm). Finally, the core depletion parameters are used 
to evaluate the population members by calculating their fitness. 
Selection, cross-over and mutation operators are used to generate 
the next generation population members. The convergence criterion 
of the GA code was established by assigning a maximum generation 
number. The solutions were attained when the maximum generation 
number is reached. Data storage was performed during calculations 
and the good solutions are archived into a file for future evaluation 
and study. Table 1 summarizes the sample GA input data and 
operators type used for Core BP optimization problem. 

 
Figure 4. Genetic Algorithm flow diagram and interaction with the 
reactor physics code 
 

Table 1. Genetic Algorithm Input Data and Operators Type 

Parameter Data 

Population Size 150 

Base Mutation Probability 1/Npop=1/150 

Maximum Generation Number 100 

Uniform Cross Over Probability 0.5 

Selection Operator Tournament selection with 
elitism technique 

Uniform  Cross Over Probability 0.5 

4. OBJECTIVE FUNCTIONS AND 
CONSTRAINTS HANDLING 
The main objective of the GA in this program is to minimize the Gd 
amount in the core while meeting all constraints. The total amount 
of Gd (SUM) in the core, which is a function of number of U/Gd 
pins and Gd2O3 concentration, is calculated by the following 
mathematical formula: 

 SUM= dimensionless fitness value in Region 2 representing total 
Gd amount in the octant core 

Ni=No of U/Gd pin for ith fresh FA position in the core loading 

Gdwi=Gd2O3 concentration for ith fresh FA in the core loading 

The fitness definitions described below are used for a three regions 
solution space; 

i=Region number 

Region 1: Fitness=f1= -i×SUM  (minimizing Gd amount) 

Region 2: Fitness=f2= -i×w2×maxpeakpinpower (minimizing 
maximum peak pin power) 

Region 3: Fitness=f3= -10000 (Negative high penalty for violating 
BOC SOB constraint and cycle exposure constraint on where the 
maximum peak pin power occurs) 

This definition guarantees that f1>f2>f3 in Figure 5. 

w2 is a coefficient that guarantees that Region 2 has always smaller 
fitness value than the Region 1) 

The three regions solution space described above has a different 
objective function for each region to guide the solutions 
systematically into a good solutions space (Region 1 of Figure 5).  
None of the good solutions violate any of the constraints given in 
Section 2.1, and the fitness of a good solution is represented by its 
total Gd amount.  Region 2 represents the population members 
having a maximum peak pin power greater than the limit value of 
1.55, and the BOC SOB concentration is less than the constraint 
value of 1700 ppm. The fitness of an individual is calculated by 
using its maximum peak pin power value with the objective of 
minimizing maximum peak pin power value in the core depletion.  

The GA developed in this program was designed to guide the GA 
solutions to move from the other two Regions into  Region 1. Each 
solution produced during the GA analysis is placed into one of the 
three regions. If the solution violates all of the constraints, it is 
placed in Region 3 as shown in Figure 5. Solutions which violate 
the BOC SOB constraint of 1700 ppm, and cycle exposure 
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constraint on where the maximum peak pin power occurs fall into 
Region 3.  They are eliminated by using a high negative fitness 
penalty (-10000) during the calculations in order to permit solutions 
that violate only the maximum peak pin power constraint go into 
Region 2. The main purpose of this constraint handling technique is 
to remove individuals from the mating pool by reducing their 
probability of being selected for the next generation due to their low 
fitness value. Sufficient Gd must be in the core to prevent the 
violation of the BOC SOB constraint. This establishes a lower limit 
for the minimum Gd amount in the core. The core can exhibit a 
positive temperature coefficient if the BOC SOB is greater than the 
BOC SOB constraint for the TMI-1 core.  

 
Figure 5. Solution Space demonstration and its objective functions 
The fitness of the solutions in Region 2 ranges in maximum peak 
pin power values from above the maximum peak pin power limit of 
1.55. Members of the solution in Region 2 are then further selected 
for the next generation using the fitness definition, which minimizes 
the maximum peak pin power and does not violate the other two 
constraints allowed in Region 3. The best solution improves in each 
generation and later reaches solutions having values at or below the 
maximum peak pin power limit. These solutions are moved from 
Region 2 to Region 1. Then, the objective function is changed to 
minimize the Gd amount in the core by keeping the individuals 
below all constraints. With this approach, the GA solutions are 
forced to move from top to bottom (Region 2 to Region 1) first by 
minimizing the maximum peak pin power in Region 2, and then 
from right to left in Region 1 as shown in Figure 5. The final result 
is to provide good solutions that minimize the total Gd amount in 
the core. 

5. RESULTS 
 Figure 6 shows the solutions as a function of their maximum peak 
pin power and total Gd in the core. It can be observed that many 
solutions are found at and below the maximum peak pin power 
constraint. Of these solutions those that fall at the extreme left of 
Figure 6 have the minimum total Gd in the core. Figure 6 shows 
only those solutions in Regions 1 and 2, the optimum solution is the 
member which is at the extreme left in the figure and has a 
maximum peak pin power less than 1.55. 

Figure 7 shows how the fitness of the solutions change during the 
evaluation process. All of the three fitness regions are shown in the 

Figure. Individuals violating constraints of the BOC SOB and cycle 
exposure where maximum peak pin power occurs are assigned a 
high negative penalty (-10000) to reduce the probability of being 
selected for the next generation and shown as Region 3 in the figure. 
The first solution in Region 1 appears after 3,750 evalutations (25 
generation×150 evaluations/generation). The best fitness value 
versus generation number is shown in Figure 8, and GA run at the 
25th  generation enters the Region 1 from Region 2 as shown in the 
figure. Figure 9 shows all of the good solutions developed during 
evaluation, which do not violate any constraints.  

Maximum Peak Pin Power vs Gd amount during evaluation
Genetic Algorithm run with available U/Gd FA designs
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Figure 6. Max. Peak Pin power vs. Gd amount during evaluation 

Fitness Value versus evaluation no
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Figure 7. Fitness value change during evaluation 
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Figure 8. Best Fitness value vs. generation number 
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Max Peak Pin Power vs BOC SOB concentration
Genetic Algorithm run with available U/Gd FA designs
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Figure 9. Good solutions not violating design constraints 

 

Table 2 presents the best solution for the TMI-1 reference core 
loading, and it shows the number of U/Gd pins and Gd2O3 
concentration needed to achieve the best BP design having the 
minimum total Gd that does not violate any constraint. These results 
were achieved using the reference fuel assembly design and U/Gd 
pin configurations in the calculations. Table 3 shows the maximum 
peak pin power, the maximum RPD power, the cycle exposure data 
where the maximum peak pin power occurs, the BOC and the EOC 
SOB values, the Gd amount (SUM), and the fitness values for the 
first ten good solutions developed during the evaluation. The best 
design has the maximum peak pin power value of 1.53, at 0 
GWd/MTU cycle burnup, maximum RPD power value of 1.401, 
BOC SOB concentration value of 1632.8 ppm, and the EOC SOB 
value of 94.4 ppm having a total Gd amount (SUM) value of 1020. 
However, the design number 4 has EOC SOB 95.8 ppm which is 
larger than best design, but the total Gd amount is higher than the 
best design. This second solution may actually be better than the 
selected best solution (Design No 1) if a cost analysis shows that the 
increased lifetime in solution 4 provides greater cost savings than 
increasing the total Gd in the core. A cost analysis will have to be 
performed to make this decision. 

Table 2. Best Solution and Core BP map for TMI-1 Cycle 16 with 
available U/Gd fuel assembly designs 

 

Table 3. Good designs data from archived solutions 

 
Finally, Figure 10 shows the EOC SOB versus the total Gd amount 
(SUM) for all of good solutions. The best solution having 94.4 ppm 
increases the core lifetime over the 66.6 ppm solution by 13.1 
EFPD. Also shown in Figure 10 is that the EOC SOB varies  
between 66.6 to 95.8 ppm when the Gd amount (SUM) changes 
from 1020 to 1300. 
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Figure 10. The total Gd amount vs. EOC SOB concentration for 
good designs 

6. CONCLUSIONS 
An efficient and practical genetic algorithm tool was developed and 
applied successfully to the BP placement optimization problem for a 
TMI-1 reference core loading. The use of different fitness functions 
guides the solution towards desired (good solutions) region in the 
solution space, which accelerates the GA solution.  

The best design is between solution 1 and solution 4 given in Table 
3, which has to be determined by a cost analysis. Solution 1 has the 
EOC SOB value of 94.4 ppm and a total Gd amount (SUM) value of 
1020 whereas Solution 4 has 95.8 ppm EOC SOB concentration and 
the total Gd amount (SUM) of 1036.  Solution 4 increases the core 
lifetime thus reducing fuel costs and Solution 1 decreases the total 
Gd amount in the core thus reducing the cost of the Gd.  Both 
solutions are good but one is more cost effective.  This can only be 
determined by a cost analysis. It is important to note that the 
difference of 29.2 ppm between the best and the worst solution in 
the good designs represent the potential of 13.1 Effective Full Power 
Days (EFPD) savings in reactor operation. 

1482



The innovation was to search all of the available and feasible 
vendor’s U/Gd fuel assembly designs. Because, the U/Gd fuel pin 
positions are limited to those used by the vendor in the reference 
fuel assembly designs, the number of U/Gd fuel pins and Gd2O3 
concentrations can only be varied for each U/Gd fuel pin 
configuration. This study established a GA that has been modified to 
cover any allowed U/Gd fuel pin configuration, number of U/Gd 
fuel pins and Gd2O3 concentration. 
 
The complete optimization calculations should be performed in a 
two step process. The first step is to alter the genotype to include 
any allowed U/Gd fuel pin configuration. Then, the GA code was 
used to determine the optimum U/Gd fuel pin configurations for this 
PWR core so that the final GA code uses only the optimum U/Gd 
fuel pin configurations. During the second step, the core BP 
optimization calculations presented in this paper are repeated with 
the newly developed optimal U/Gd fuel pin configurations instead 
of using vendor’s U/Gd fuel pin configurations. This advanced 
technique is to be subsequently published in an appropriate journal.  
 
The hybrid use of GAs and Neural Networks (NNs) is being studied 
to improve and to speed up the optimization process. All GA 
solutions are forwarded to a reactor physics code for determining the 
fitness value of each solution regardless of how unacceptable that 
solution might be.  The reactor physics code involves long running 
times for each computation (~ 10 sec for one SIMULATE 
evaluation due to 9 depletion steps used in the real core depletion 
calculations). The NNs could make it possible to determine the BOC 
SOB, EOC SOB, and the Radial Power Distribution (RPD) in the 
core with sufficient accuracy to identify GA solutions that are truly 
not valid without performing the reactor physics calculations 
reducing the computational time by an order of magnitude or more.   
The total CPU time is approximately 41.9 hours on IBM-600 Unix 
mainframe for a sample GA run. The NNs have potential to reduce 
the total CPU time by filtering out many invalid solutions that 
violate the constraints. 

Genetic algorithms using parallel machine may present an effective 
way to further speed up the calculations. It is a promising and 
challenging future research area in the optimization calculations 
[17]. 
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